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Abstract

We propose a framework for normal form games where players can use
Knightian uncertainty strategically. In such Ellsberg games, ambiguity–
averse players may render their actions objectively ambiguous by us-
ing devices such as Ellsberg urns, in addition to the standard mixed
strategies. While Nash equilibria remain equilibria in the extended
game, there arise new Ellsberg equilibria with distinct outcomes, as
we illustrate by negotiation games with three players. We character-
ize Ellsberg equilibria in two–person games with conflicting interests.
These equilibria turn out to be consistent with experimental devia-
tions from Nash equilibrium play.

Key words and phrases: Knightian Uncertainty in Games, Strategic Ambiguity, Ellsberg

Games

JEL subject classification: C72, D81

1 Introduction

Common sense suggests that a certain strategic ambiguity can be useful in
conflicts. ”Many different strategies are used to orient toward conflicting
interactional goals; some examples include avoiding interaction altogether,
remaining silent, or changing the topic.” says Eric Eisenberg in his famous
article (Eisenberg (1984)), and he points out that applying one’s resources of
ambiguity is key in successful communication when conflicts of interest are
present.

This paper introduces such strategic use of ambiguity into games. Al-
though game theory was invented to model conflicts of interest, so far the
theory does not allow players to intentionally choose ambiguity as a strategy.
To this end we are going back to the beginnings of game theory. Von Neu-
mann and Morgenstern (1953) introduced mixed strategies as random devices
that are used to conceal one’s behavior. We take up this interpretation and
propose a generalization. In short, we allow players to use Ellsberg urns in
addition to probabilistic devices like a roulette wheel or a die. For example, a
player can base his action on the draw from an urn that contains hundred red
and blue balls and it is only known that the number of red balls is between
thirty and fifty. Such urns are objectively ambiguous, by design; players can
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thus create ambiguity. The recent advances in decision theory that were mo-
tivated by Ellsberg’s famous experiments and Knight’s distinction between
risk and uncertainty, allow to model such strategic behavior formally.

Objective ambiguity means that players cannot have a look into their
own urn. They intentionally choose a device that leaves themselves uncer-
tain about the pure strategy eventually played once uncertainty is resolved.
Players choose to know less about their own play than they could know.
This may sound surprising or implausible at first. It is, however, the nat-
ural generalization of the usual mixed strategy when it is interpreted as an
objective device to conceal one’s behavior, as in the classical justification by
von Neumann and Morgenstern. The founders of game theory justify the
use of random devices in zero sum games by a thought experiment. If your
opponent might find out your strategy, then it is optimal to conceal your
behavior by using a random device. We just go one step further and allow
players to use Ellsberg urns to conceal their plans.

Another interpretation of ambiguous actions in game theory is closer to
the behavioral and psychological literature. Gigerenzer (2007), e.g., claims
that not assessing all possibilities and information about a choice is often
better, more efficient or more satisfying for a human decision maker. Using
an Ellsberg strategy where the exact probability of choosing an action is not
specified might be viewed as one way to model such mental efficiency.

In this paper we propose a model of Ellsberg games that differs from the
classical model merely in the one aspect that players may use (objectively
ambiguous) Ellsberg urns in addition to mixed strategies. We first discuss the
conceptual foundations of our approach; to this end, we compare the two in-
terpretations of mixed strategies as objective random devices (von Neumann
and Morgenstern) or as beliefs about other players’ pure actions (the Bayesian
view). The latter, Bayesian view has been generalized to ambiguity before in
the literature starting with Dow and Werlang (1994), Lo (1996), and Mari-
nacci (2000). There, the interpretation of mixed strategies as beliefs about
others’ actions is generalized to uncertain beliefs in the sense of the decision–
theoretic literature on Knightian uncertainty (Schmeidler (1989), Gilboa and
Schmeidler (1989)). Bade (2011) allows for ambiguous Anscombe–Aumann
acts, and is closer to our approach in that sense; however, she assumes that
ambiguity is a subjective part of players’ preferences, thus generalizing Au-
mann’s subjective equilibria (Aumann (1974)). A detailed discussion of the
literature is provided in Section 6. Our approach takes the von Neumann
and Morgenstern point of view where mixed strategies are used to conceal
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one’s behavior. We generalize this classical model to incorporate Knightian
uncertainty in an objective sense as it was recently axiomatized by Gajdos,
Hayashi, Tallon, and Vergnaud (2008).

A remarkable consequence is that players, once offered the possibility
to use Ellsberg urns, actually use them, even though they are ambiguity–
averse1. New equilibria emerge that are not Nash equilibria in the original
game, with outcomes that are not in the support of the original Nash equi-
librium. We explain this with an example of a peace negotiation taken from
Greenberg (2000). This game has a unique Nash equilibrium in which war
is the outcome; there is another, as we call it, Ellsberg equilibrium, in which
peace is the outcome.

Our approach to games has its most natural and fruitful applications to
conflicts where players are at least to some degree in opposition to each other.
We consequently perform a detailed study of two–person 2 × 2 games with
conflicting interests, as Matching Pennies, or similar competitive situations.

We discuss first two new phenomena, immunization against ambiguity

and nonlinearity of payoffs that arise in Ellsberg games. We then derive all
Ellsberg equilibria of 2×2–conflict games. While our predictions are broader
than the classical unique Nash equilibrium, they remain restrictive, and, at
least in principle, testable. Our results do allow to explain the experimental
findings of Goeree and Holt (2001) who show that humans tend to deviate
from Matching Pennies in asymmetric modified Matching Pennies games,
but tend to play Nash equilibrium in symmetric Matching Pennies. This
corresponds and is consistent with our Ellsberg equilibria.

The paper is organized as follows. In Section 2 we explain how Ellsberg
urns are understood as concealment device, in the line of von Neumann and
Morgenstern’s interpretation of mixed strategies. In Section 3 we develop
the theoretical framework of Ellsberg games. The concept is applied to the
negotiation example in Section 4. Section 5 analyses the use of strategic
ambiguity in two–person conflicts. We compare Ellsberg games to existing
equilibrium concepts with ambiguity–aversion in Section 6, and we conclude
in Section 7.

1In this sense, our assumption of ambiguity–aversion is parsimonious as it makes it
harder for players to introduce Knightian uncertainty. They do not use Ellsberg urns for
love of uncertainty.
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2 Ellsberg Urns and Mixed Strategies: Con-
cealment Device versus Beliefs about Op-
ponents’ Behavior

Let us go back to the very foundations of game theory. A game consists of a
finite setN of players, a finite set of (pure) strategies Si, i ∈ N for each player,
as well as a collection of payoff functions ui : S → R defined over strategy
profiles S = ×i∈NSi. Von Neumann and Morgenstern (1953) introduce mixed
strategies as probability vectors Pi over pure strategies Si. The question
then emerges how players evaluate profiles of such mixed strategies P =
(P1, . . . , Pn); as the reader knows, von Neumann and Morgenstern adopt
expected utility (and axiomatize their choice).

In this paper, we are going back to these foundations and propose a gen-
eralization. We allow players to use Ellsberg urns in addition to probabilistic
devices like a roulette wheel or a die. So we imagine that a player can credibly
commit his behavior on the outcome of an Ellsberg urn whose parameters he
has chosen. To give an example, in a Matching Pennies game he would play
HEAD if the draw from an urn with 100 red and blue balls yields a red ball;
he himself and the other players only know that the proportion of red balls
lies between 30 and 50 percent. The Ellsberg urn thus displays objective,
common knowledge of ambiguity. All players know the possible probability
distributions of outcomes, but no player has an informational advantage over
others. We want to find out what the consequences for game theory are if
we change the foundations in such a way.

Before we justify conceptually our new approach, let us go back again to
classical game theory and ask how mixed strategies are justified and inter-
preted there. Our discussion follows closely the excellent account delivered
in Reny and Robson (2004).

From a mathematical point of view, mixed strategies lead to convex strat-
egy sets; and if one wants to assign a unique value to zero sum games, e.g.,
such convexity is needed. Convexity and linearity of the payoff functions
are useful in many other respects as well, of course. Just think about the
indifference principle by which we usually find Nash equilibria.

The purely mathematical aspect would not be very compelling, of course,
had it not a plausible interpretation. In the words of Von Neumann and
Morgenstern (1953) (p. 144): “In playing Matching Pennies against an at
least moderately intelligent opponent, the player will not attempt to find out
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the opponent’s intentions, but will concentrate on avoiding having his own
intentions found out, by playing irregularly ’heads’ and ’tails’ in successive
games. Since we wish to describe the strategy in one play — indeed we must
discuss the course in one play and not that of a sequence of plays — it is
preferable to express this as follows: The player’s strategy consists neither
of playing ’tails’ and ’heads’, but of playing ’tails’ with the probability of
1
2 and ’heads’ with the probability of 1

2 .” They then point out that this
strategy protects the player against losses as his expected gain is always zero
regardless how the opponent plays.

Von Neumann and Morgenstern always interpret these strategies as ob-

jective random devices like a fair coin or die. In particular, all players assign
the same probabilities to the device’s outcomes. In zero sum games, the
use of such mixing can be justified as an attempt to conceal your behavior
from your opponents. Indeed, von Neumann and Morgenstern also offer a
Stackelberg game–like argument. Suppose that you have to write down your
strategy on a sheet of paper before you play. If your opponent sends a spy
able to find out what you have written down, then, in a zero sum game, it is
strictly better for you to have concealed your behavior by writing “I will use a
fair coin to determine my behavior.” A mixed strategy, in von Neumann and
Morgenstern’s interpretation, is thus deliberate, objective randomization.

These arguments run into problems in common interest games as one
would prefer one’s own strategy to be found out by the opponent in simple
coordination games (as has been pointed out by Schelling (1960) and Lewis
(1969) already). Harsanyi (1967)’s construction allows to resolve this plausi-
bility problem; he shows that mixed strategy equilibria can be interpreted as
pure strategy equilibria in nearby incomplete information games where the
payoffs are suitably perturbed, and players have private information. A com-
mon interpretation of mixed strategies nowadays goes even a step further.
Several authors, including Aumann (1987), Armbruster and Boege (1979),
Tan and Werlang (1988), Aumann and Brandenburger (1995), propose to
forgo Harsanyis’s construction and to interpret mixed strategies directly as
the belief about which pure strategies the other players are going to use.
Players are assumed to choose a definite action; as other players do not know
exactly which one, the mixed strategy represents their uncertainty. For more
than two players, this requires some consistency among beliefs in equilibrium,
of course. We will come back to this below when we discuss beliefs equilibria.

Summing up, we have here two opposing interpretations of mixed strate-
gies: on the one hand, the ”objective” interpretation by von Neumann and
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Morgenstern where players deliberately use random devices with known prob-
abilities to conceal their behavior; on the other hand, the ”subjective” beliefs
interpretation where the probability distributions represent players’ uncer-
tainty about other players’ pure strategy choice.2

The literature on ambiguity in games has mainly focused on the beliefs
interpretation of mixed strategies. So far, it has usually been assumed that
the players choose pure strategies and that the opponents are uncertain in the
Knightian sense about their choice. Please refer to Section 6 for a detailed
discussion of the literature and the relation of the different approaches to our
model.

Our paper differs from that literature as we take up the approach by von
Neumann and Morgenstern and allow players to use objective devices that
create Knightian uncertainty. We let them play Ellsberg urns to conceal their
behavior. As in the classical case, our approach will have the most fruitful
applications in games of conflict where it is in players own interest to conceal
their behavior. This will also be highlighted by our examples. The approach
might seem less plausible in common interest games; however, the theory in
its abstract form applies there as well, of course, and we think it is useful to
study the consequences in such games, too.

2Both approaches are merged in the framework of Reny and Robson (2004). Reny
and Robson unify both views of mixed equilibria with the help of another construction.
In their perturbed game, every player i is characterized by a privately known subjective
probability ti ∈ [a, b], 0 < a < b < 1 according to which he believes that a spy finds out
his strategy. The payoff of the perturbed game is then

(1− ti)ui(mi,m−i) + tiui(mi, bestreplyto(mi)).

So with probability 1 − ti the normal static payoff is obtained, whereas with probability
ti, the other player finds out one’s strategy and is allowed to play a best reply to it. In
such a situation, for a generic class of games, one can approximate all Nash equilibria by
suitable pure strategy equilibria of the perturbed game, with a and b close to zero. In
contrast to Harsanyi, players do use mixed strategies in the perturbed game sometimes,
e.g. in zero sum games. We refer to their excellent paper for a more detailed discussion
which is beyond the scope of our aims here.
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3 Ellsberg Games

3.1 Creating ambiguity: objective Ellsberg urns

Let us formalize the intuitive idea that players can create ambiguity with
the help of Ellsberg urns. An Ellsberg urn is, for us, a triple (Ω,F ,P) of a
nonempty set Ω of states of the world, a σ–field F on Ω (where one can take
the power set in case of a finite Ω), and a set of probability measures P on
the measurable space (Ω,F). This set of probability measures represents the
Knightian uncertainty of the strategy.

A typical example is the classical Ellsberg urn that contains 30 red balls,
and 60 balls that are either black or yellow. One ball is drawn from that
urn. The state space consists of three elements {R,B, Y }, F is the power
set, and P the set of probability vectors (P1, P2, P3) such3 that P1 = 1/3,
P2 = k/60, P3 = (60− k)/60 for any k = 0, . . . , 60.

We assume that the players of our game have access to and can design
the parameters of such Ellsberg urns; imagine that there is an independent,
trustworthy laboratory that sets up such urns and reports the outcome truth-
fully.

Note that we allow the player to choose the degree of ambiguity of his
urn. He tells the experimentalists of his laboratory to set up such and such
an Ellsberg experiment that generates exactly the set of distributions Pi. In
this sense, the ambiguity in our formulation of the game is “objective”; it is
not a matter of agents’ beliefs about the actions of other players, but rather
a property of the device used to determine his action.

3.2 Ellsberg Games

We come now to the game where players can use such urns in addition to
the usual mixed strategies (that correspond to roulette wheels or dice). Let
N = {1, ..., n} be the set of players. Each player i has a finite strategy set
Si. Let S =

�n
i=1 Si be the set of pure strategy profiles. Players’ payoffs are

given by functions
ui : S → R (i ∈ N) .

The normal form game is denoted G = �N, (Si), (ui)�.
3We are always going to work with convex sets of probability measures. In this case,

this means that we would allow for any P2, P3 ≥ 0 with P2 + P3 = 2/3 here. In our
framework, this is without loss of generality, of course.
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Players can now use different devices. On the one hand, we assume that
they have “roulette wheels” or “dices” at their disposal, i.e. randomizing
devices with objectively known probabilities. The set of these probabilities
over Si is denoted ∆Si. The players evaluate such devices according to
expected utility, as in von Neumann and Morgenstern’s formulation of game
theory.

Moreover, and this is the new part, players can use Ellsberg urns. As we
said above, we imagine that the players can credibly commit to base their
actions on ambiguous outcomes. Technically, we model the Ellsberg urn of
player i as a triple (Ωi,Fi,Pi) as explained above.

Player i acts in the game by choosing a measurable function (or Anscombe–
Aumann act)

fi : (Ωi,Fi) → ∆Si

which specifies the classical mixed strategy played once the outcome of the
Ellsberg urn is revealed. An Ellsberg strategy for player i is then a pair

((Ωi,Fi,Pi), fi)

of an Ellsberg urn and an act.
To finish the description of our Ellsberg game, we have to determine play-

ers’ payoffs. We suppose that all players are ambiguity–averse: in the face of
ambiguous events (as opposed to simply random events) they evaluate their
utility in a cautious and pessimistic way. This behavior in response to am-
biguity has been observed in the famous experiments of Ellsberg (1961) and
confirmed in further experiments, for example of Pulford (2009) and Camerer
and Weber (1992), see also Etner, Jeleva, and Tallon (2012) for references.
For our purpose we follow the axiomatization of attitude towards objective
but imprecise information in Gajdos, Hayashi, Tallon, and Vergnaud (2008).
In the case of extreme pessimism the utility is evaluated as a maxmin ex-
pected utility similar to the axiomatization of Gilboa and Schmeidler (1989),
but with the difference of the decision maker facing objective instead of sub-
jective ambiguity. Starting with Jaffray (1989), Giraud (2006) and Giraud
and Tallon (2011) are other papers that make a case for objective ambiguity,
as well as Stinchcombe (2007) and Olszewski (2007).

The payoff of player i ∈ N at an Ellsberg strategy profile ((Ω,F ,P), f)
is thus the minimal expected utility with respect to all different probability
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distributions in the closed and convex set P ,

Ui(((Ω,F ,P), f)) := min
P1∈P1,...,Pn∈Pn

�

Ω1

· · ·
�

Ωn

ui(f(ω)) dPn . . . dP1 .

We call the described larger game an Ellsberg game.
An Ellsberg equilibrium is, in the same spirit as Nash equilibrium, a profile

of Ellsberg strategies

(((Ω∗
1,F∗

1 ,P∗
1 ), f

∗
1 ), . . . , ((Ω

∗
n,F∗

n,P∗
n), f

∗
n))

where no player has an incentive to deviate, i.e. for all players i ∈ N , all
Ellsberg urns (Ωi,Fi,Pi), and all acts fi for player i we have

Ui (((Ω
∗
,F∗

,P∗), f ∗)) ≥ Ui

�
((Ωi,Fi,Pi), fi), ((Ω

∗
−i,F∗

−i,P∗
−i), f

∗
−i)

�
.
4

3.3 Reduced Form Strategies

This definition of an Ellsberg game depends on the particular Ellsberg urn
used by each player i. As there are arbitrarily many possible state spaces5, the
definition of Ellsberg equilibrium might not seem very tractable. Fortunately,
there is a more concise way to define Ellsberg equilibrium. The procedure is
similar to the reduced form of a correlated equilibrium, see Aumann (1974)
or Fudenberg and Tirole (1991). Instead of working with arbitrary Ellsberg
urns, we note that the players’ payoff depends, in the end, on the set of
distributions that the Ellsberg urns and the associated acts induce on the set
of strategies. One can then work with that set of distributions directly.

Definition 1. Let G = �N, (Si), (ui)� be a normal form game. A reduced
form Ellsberg equilibrium of the game G is a profile of sets of probability

measures Q∗
i ⊆ ∆Si, such that for all players i ∈ N and all sets of probability

measures Qi ⊆ ∆Si we have

min
Pi∈Q∗

i ,P−i∈Q∗
−i

�

Si

�

S−i

ui(si, s−i) dP−idPi

≥ min
Pi∈Qi,P−i∈Q∗

−i

�

Si

�

S−i

ui(si, s−i) dP−idPi .

4Throughout the paper we follow the notational convention that (fi, f∗
−i) :=

(f∗
1 , ..., f

∗
i−1, fi, f

∗
i+1, ..., f

∗
n). The same convention is used for profiles of pure strategies

(si, s−i) and probability distributions (Pi, P−i).
5In fact, the class of all state spaces is too large to be a well–defined set according to

set theory.
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The two definitions of Ellsberg equilibrium are equivalent in the sense
that every Ellsberg equilibrium induces a payoff–equivalent reduced form
Ellsberg equilibrium; and every reduced form Ellsberg equilibrium is an Ells-
berg equilibrium with state space Ωi = Si and f

∗
i the constant act.

Proposition 1. Ellsberg equilibrium and reduced form Ellsberg equilibrium

are equivalent in the sense that every Ellsberg equilibrium ((Ω∗
,F∗

,P∗), f ∗)
induces a payoff–equivalent reduced form Ellsberg equilibrium on Ω∗ = S;

and every reduced form Ellsberg equilibrium Q∗ is an Ellsberg equilibrium

((S,F ,Q∗), f ∗) with f
∗ the constant act.

This is shown formally in the appendix.
We henceforth call a set Qi ⊆ ∆Si an Ellsberg strategy whenever it is

clear that we are in the reduced form context.

3.4 Ellsberg Equilibria Generalize Nash Equilibria

Note that the classical game is contained in our formulation: players just
choose a singleton Pi = {δπi} that puts all weight on a particular (classical)
mixed strategy πi.

Player 1

Player 2
L R

T 3, 3 0, 0
B 0, 0 1, 1

Figure 1: Strategic Ambiguity does not unilaterally make a player better off.

Now let (π1, . . . , πn) be a Nash equilibrium of the game G. Can any player
unilaterally gain by creating ambiguity in such a situation? The answer is no.
Take the game in Figure 1 and look at the pure strategy Nash equilibrium
(B,R) with equilibrium payoff 1 for both players. If player 1 introduces
ambiguity, he will play T in some states of the world (without knowing
the exact probability of those states). But this does not help here because
player 2 sticks to his strategy R, so playing T just leads to a payoff of zero.
Unilateral introduction of ambiguity does not increase one’s own payoff. We
think that this is an important property of our formulation.

Proposition 2. Let G = �N, (Si), (ui)� be a normal form game. Then a

mixed strategy profile (π1, . . . , πn) of G is a Nash equilibrium of G if and
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only if the corresponding profile of singletons (P1, . . . ,Pn) with Pi = {δπi} is

an Ellsberg equilibrium.

In particular, Ellsberg equilibria exist when the strategy sets Si are finite.

By including and generalizing Nash equilibria, our formulation avoids the
existence pitfalls that one encounters when players are assumed to play pure
strategies and beliefs are uncertain about those pure actions.

Let us next turn to the question whether non–Nash behavior can arise in
Ellsberg games.

4 Non–Nash Outcomes: Strategic Ambiguity
in Negotiation Games

Strategic ambiguity can lead to new phenomena that lie outside the scope
of classical game theory. As our first example, we consider the following
peace negotiation game taken from Greenberg (2000). There are two small
countries who can either opt for peace, or war. If both countries opt for
peace, all three players obtain a payoff of 4. If one of the countries does
not opt for peace, war breaks out, but the superpower cannot decide whose
action started the war. The superpower can punish one country and support
the other. The game tree is in Figure 2 below.6

peacewar

A

punishB

9, 0, 0

punishA

0, 9, 1 punishB

6, 0, 1

punishA

3, 9, 0

peace

4, 4, 4

war

B

C

1

Figure 2: Peace Negotiation

6We take the payoffs as in Greenberg’s paper. In case the reader is puzzled by the slight
asymmetry between country A and B in payoffs: it does not play a role for our argument.
One could replace the payoffs 3 and 6 for country A by 0 and 9.
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As we deal here only with static equilibrium concepts, we also present
the normal form, where country A chooses rows, country B columns, and the
superpower chooses the matrix.

war peace

war 0, 9, 1 0, 9, 1
peace 3, 9, 0 4, 4, 4

punishA

war peace

war 9, 0, 0 9, 0, 0
peace 6, 0, 1 4, 4, 4

punishB

Figure 3: Peace Negotiation in normal form

This game possesses a unique Nash equilibrium where country A mixes
with equal probabilities, and country B opts for war; the superpower has no
clue who started the war given these strategies. It is thus indifferent about
whom to punish and mixes with equal probabilities as well. War occurs with
probability 1. The resulting equilibrium payoff vector is (4.5, 4.5, 0.5).

If the superpower can create ambiguity (and if the countries A and B
are ambiguity–averse), the picture changes. Suppose for simplicity, that the
superpower creates maximal ambiguity by using a device that allows for any
probability between 0 and 1 for its strategy punishA. The pessimistic play-
ers A and B are ambiguity–averse and thus maximize against the worst case.
For both of them, the worst case is to be punished by the superpower, with
a payoff of 0. Hence, both prefer to opt for peace given that the superpower
creates ambiguity. As this leads to a very desirable outcome for the super-
power, it has no incentive to deviate from this strategy. We have thus found
an equilibrium where the strategic use of ambiguity leads to an equilibrium
outcome outside the support of the Nash equilibrium outcome.

Let us formalize the above considerations. We claim that there is the fol-
lowing type of Ellsberg equilibria. The superpower creates ambiguity about
its decision; if this ambiguity is sufficiently large, both players fear to be
punished by the superpower in case of war. As a consequence, they opt for
peace.

In our game with just two actions for the superpower, we can identify an
Ellsberg strategy with an interval [P0, P1] where P ∈ [P0, P1] is the probabil-
ity that the superpower punishes country A. Suppose the superpower plays
so with P0 <

4
9 and P1 >

5
9 . Assume also that country B opts for peace. If A

goes for war, it uses that prior in [P0, P1] which minimizes its expected pay-
off, which is P1. This yields UA(war, war, [P0, P1]) = P1 · 0+ (1−P1) · 9 < 4.
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Hence, opting for peace is country A’s best reply. The reasoning for country
B is similar, but with the opposite probability P0. If both countries A and
B go for peace, the superpower gets 4 regardless of what it does; in partic-
ular, the ambiguous strategy described above is optimal. We conclude that
(peace, peace, [P0, P1]) is a (reduced form) Ellsberg equilibrium.

Proposition 3. In Greenberg’s game, the strategies (peace, peace, [P0, P1])
with P0 <

4
9 and P1 >

5
9 form an Ellsberg equilibrium.

Note that this Ellsberg equilibrium is very different from the game’s
unique Nash equilibrium. In Nash equilibrium, war occurs in every play
of the game; in our Ellsberg equilibrium, peace is the unique outcome.7 By
using the strategy [P0, P1] which is a set of probability distributions, the su-
perpower creates ambiguity. This supports an Ellsberg equilibrium where
players’ strategies do not lie in the support of the unique Nash equilibrium.
We also point out that the countries A and B use different worst–case priors

in equilibrium; this is a typical phenomenon in Ellsberg equilibria that are
supported by strategies which are not in the support of any Nash equilibrium
of the game.

Greenberg refers to historic peace negotiations between Israel and Egypt
(countries A and B in the negotiation example) mediated by the USA (su-
perpower C) after the 1973 war. As explained by Kissinger (1982)8, the fact
that both Egypt and Israel were too afraid to be punished if negotiations
broke down partly contributed to the success of the peace negotiations. This
story is supported by our Ellsberg equilibrium, a first evidence that Ells-
berg equilibria might capture some real world phenomena better than Nash
equilibria.

7Other equilibrium concepts for extensive form games (without Knightian uncertainty)
such as conjectural equilibrium Battigalli and Guaitoli (1988), self–confirming equilibrium
Fudenberg and Levine (1993), and subjective equilibrium Kalai and Lehrer (1995) can also
assure the peace equilibrium outcome in the example by Greenberg. Other equillibrium
concepts for extensive form games with Knightian uncertainty are e.g. Battigalli, Cerreia-
Vioglio, Maccheroni, and Marinacci (2011) and Lo (1999). Postponing the analysis of the
relation of these equilibrium concepts to Ellsberg equilibrium to a later paper, we only
want to stress here that in difference to the existing concepts the driving factor in Ellsberg
equilibrium is that ambiguity is employed strategically and objectively.

8See p. 802 therein, in particular.
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5 Strategic Ambiguity in Two–Person Con-
flicts

Our approach to games has its most natural and fruitful applications to
conflicts where players are at least to some degree in opposition to each
other. We start this section by discussing a modified version of Matching
Pennies to illustrate the phenomena of immunization against ambiguity and
nonlinearity of payoffs that arise in Ellsberg games. We then provide a
general analysis of 2 × 2–conflict games. While our predictions are broader
than the classical Nash equilibrium, they remain restrictive, and, at least in
principle, testable. Our results do allow to explain the experimental findings
of Goeree and Holt (2001) who show that humans tend to deviate from
Matching Pennies in asymmetric modified Matching Pennies games, but tend
to play Nash equilibrium in symmetric Matching Pennies. This corresponds
and is consistent with our Ellsberg equilibria.

5.1 A Matching Pennies Example

Let us now consider a modified version of Matching Pennies. The payoff
matrix for this game is in Figure 4.

Player 1

Player 2
HEAD TAIL

HEAD 3,−1 −1, 1
TAIL −1, 1 1,−1

Figure 4: Modified Matching Pennies I

We point out two effects that arise due to strategic ambiguity in this class
of games. On the one hand, the Ellsberg equilibria are different from what
one might expect first; in a game like the one above, one might intuitively
guess that “full ambiguity” would be an Ellsberg equilibrium, as the natural
generalization of “full randomness” (completely mixed Nash equilibrium).
This is not the case.

On the other hand, we emphasize an important property of Ellsberg
games (or ambiguity aversion in general): the best reply functions are no
longer linear in the probabilities. As a consequence, the indifference princi-
ple of classical game theory – when two pure strategies yield the same payoff,
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then the player is indifferent about mixing in any arbitrary way between the
two strategies – does not carry over to Ellsberg games. When a player is
indifferent between two Anscombe–Aumann acts, this does not imply that
he is indifferent between all mixtures over these two acts. This is due to
the hedging or diversification effect provided by a (classical) mixed strategy
when players are ambiguity–averse. We call this effect immunization against

strategic ambiguity.

Immunization against Strategic Ambiguity

In our modified version of Matching Pennies, the unique Nash equilibrium
is that player 1 mixes uniformly over his strategies, and player 2 mixes with
(1/3, 2/3). This yields the equilibrium payoffs 1/3 and 0. One might guess
that one can get an Ellsberg equilibrium where both players use a set of prob-
ability measures around the Nash equilibrium distribution as their strategy.
This is not true.

The crucial point to understand here is the following. Players can im-
munize themselves against ambiguity; in the modified Matching Pennies ex-
ample, player 1 can use the mixed strategy (1/3, 2/3) to make himself inde-
pendent of any ambiguity used by the opponent. Indeed, with this strategy,
his expected payoff is 1/3 against any mixed strategy of the opponent, and
a fortiori against Ellsberg strategies as well. This strategy is also the unique
best reply of player 1 to Ellsberg strategies with ambiguity around the Nash
equilibrium; in particular, such strategic ambiguity is not part of an Ellsberg
equilibrium.

Let us explain this somewhat more formally. An Ellsberg strategy for
player 2 can be identified with an interval [Q0, Q1] ⊆ [0, 1] where Q ∈ [Q0, Q1]
is the probability to play HEAD. Suppose player 2 uses many probabilities
around 1/3, so Q0 < 1/3 < Q1. The (minimal) expected payoff for player 1
when he uses the mixed strategy with probability P for HEAD is then

min
Q0≤Q≤Q1

3PQ− P (1−Q)− (1− P )Q+ (1− P )(1−Q)

= min {Q0(6P − 2), Q1(6P − 2)}+ 1− 2P

=






Q1(6P − 2) + 1− 2P if P < 1/3
1/3 if P = 1/3

Q0(6P − 2) + 1− 2P else .

We plot the payoff function in Figure 5.
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Figure 5: Player 1’s (minimal expected) payoff as a function of the probability
P of playing HEAD when player 2 uses the Ellsberg strategy [1/4, 1/2].

By choosing the mixed strategy P = 1/3, player 1 becomes immune
against any ambiguity and ensures the (Nash) equilibrium payoff of 1/3. If
there was an Ellsberg equilibrium with P0 < 1/2 < P1 and Q0 < 1/3 < Q1,
then the minimal expected payoff would be below 1/3. Hence, such Ellsberg
equilibria do not exist.

Such immunization plays frequently a role in two–person games, and it
need not always be the Nash equilibrium strategy that is used to render
oneself immune. Consider, e.g., the slightly changed payoff matrix

Player 1

Player 2
HEAD TAIL

HEAD 1,−1 −1, 1
TAIL −2, 1 1,−1

Figure 6: Modified Matching Pennies II

In the unique Nash equilibrium, player 1 still plays both strategies with
probability 1/2 (to render player 2 indifferent); however, in order to be im-
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mune against Ellsberg strategies, he has to play HEAD with probability 3/5.
Then his payoff is −1/5 regardless of what player 2 does. This strategy does
not play any role in either Nash or Ellsberg equilibrium. It is only important
in so far as it excludes possible Ellsberg equilibria by being the unique best
reply to some Ellsberg strategies.

Ellsberg Equilibria

The question thus arises if there are any Ellsberg equilibria different from
the Nash equilibrium at all. There are, and they take the following form
for our first version of modified Matching Pennies (Figure 4). Player 1 plays
HEAD with probability P ∈ [1/2, P1] for some 1/2 ≤ P1 ≤ 1 and player 2
plays HEAD with probability Q ∈ [1/3, Q1] for some 1/3 ≤ Q1 ≤ 1/2. This
Ellsberg equilibrium yields the same payoffs 1/3 and 0 as in Nash equilibrium.
We prove a more general theorem covering this case in the next section.

Proposition 4. In Modified Matching Pennies I, the Ellsberg equilibria are

of the form ([1/2, P1], [1/3, Q1]) for 1/2 ≤ P1 ≤ 1 and 1/3 ≤ Q1 ≤ 1/2.

The typical Ellsberg equilibrium strategy takes the following form. Player
1 says :“I will play HEAD with a probability of at least 50%, but not less.”
And Player 2 replies: “I will play HEAD with at least 33%, but not more
than 50%.”

5.2 General Conflict Games

Let us now generalize the above results. Consider the competitive two–person
2× 2 game with payoff matrix

Player 1

Player 2
L R

U a, d b, e

D b, e c, f

such that
a, c > b and d, f < e .

Due to these assumptions, our game has conflicting interests and no pure
strategy Nash equilibria. In the unique mixed strategy Nash equilibrium,
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player 1 plays U with probability

P
∗ =

f − e

d− 2e+ f
,

and player 2 plays L with probability

Q
∗ =

c− b

a− 2b+ c
.

Proposition 5. The Ellsberg equilibria of the above game are the following:

For P
∗
> Q

∗ all Ellsberg equilibria are of the form

([P ∗
, P1], [Q

∗
, Q1]) for P

∗ ≤ P1 ≤ 1, Q∗ ≤ Q1 ≤ P
∗;

for P
∗
< Q

∗ all Ellsberg equilibria are of the form

([P0, P
∗], [Q0, Q

∗]) for 0 ≤ P0 ≤ P
∗
, P

∗ ≤ Q0 ≤ Q
∗;

and for P
∗ = Q

∗ all Ellsberg equilibria are of the form

(Q∗
, [Q0, Q1]) where Q0 ≤ Q

∗ ≤ Q1

and

([P0, P1], P
∗) where P0 ≤ P

∗ ≤ P1.

There are several noteworthy properties here. First of all, in symmetric
Matching Pennies games, including the 2 × 2 zero sum games, essentially
no new equilibria arise. Symmetry implies that the immunization strategy
and the Nash equilibrium strategy coincide, leaving no room for nontrivial
Ellsberg equilibria beyond the artificial fact that one player can use some
ambiguity given that the other player plays the immunization strategy that
renders him immune to any ambiguity. But we do interpret this kind of
equilibria as meaning that one can only play Nash in symmetric conflicts.

The picture changes for asymmetric conflicts. In that case, some ambigu-
ity is possible; however, the ambiguity is not around the Nash equilibrium,
but rather the Nash equilibrium is a bound for the set of probabilities used
in the Ellsberg strategies. For one player, the probability bounds are exactly
given by the Nash equilibrium probabilities.9

9This is, however, partly due to the special case treated in Proposition 5. When (D,L)
and (U,R) do not yield the same payoff, the probability bounds are the Nash equilibrium
strategy on one side and the immunization strategy on the other. See also Remark 1 in
the appendix following the proof of Proposition 5.
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We also see that our theory leads to a broader set of equilibria as the
classical theory, but it is not arbitrary. The probabilities used in Ellsberg
equilibrium do have to satisfy certain nontrivial bounds. In particular, one
can test these bounds in the lab. We will come back to testability below.

5.3 Human Behavior in Matching Pennies Games and
Ellsberg Equilibria

Whereas the support of the Ellsberg and Nash equilibria is obviously the
same, we do think that the Ellsberg equilibria reveal a new class of behavior
not encountered in game theory before. It might be very difficult for humans
to play exactly a randomizing strategy with equal probabilities; indeed, the
ability to do so has been a debate since the early days of game theory, and
some claim that humans cannot randomize, see Dang (2009) for a recent
account and references therein. Our result shows that it is not necessary to
randomize exactly to support a similar equilibrium outcome (with the same
expected payoff). It is just enough that your opponent knows that you are
randomizing with some probability, and that it could be that this probability
is one half, but not less. It is thus sufficient that the player is able to control
the lower bound of his device. This might be easier to implement than the
perfectly random behavior required in classical game theory.

In fact, there are experimental findings which suggest that the Ellsberg
equilibrium strategy in the modified Matching Pennies game is closer to real
behavior than the Nash equilibrium prediction. To illustrate this, let us con-
sider the interesting results by Goeree and Holt (2001) who ran experiments
on three different versions of Matching Pennies; the three payoff matrices can
be seen in Table 1.

In the first game, we have a typical symmetric conflict game with a unique
mixed Nash equilibrium in which both players randomize uniformly over both
pure strategies. The aggregate play of humans in the experiment is closely
consistent with the Nash equilibrium prediction, 48% of players choosing
“Top” or “Left”, resp.

Remember that the probabilities in a mixed strategy equilibrium are cho-
sen in such a way as to render the opponent indifferent between her two
pure strategies. As a consequence, if we change the payoffs of player 1 only
(while keeping the ordering of payoffs), his Nash equilibrium strategy does
not change because he has to make player 2 indifferent between her two pure
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Left (48) Right (52)
Symmetric Top (48) 80,40 40,80

Bottom (52) 40,80 80,40
Left (16) Right(84)

Asymmetric Top (96) 320, 40 40,80
Bottom (4) 40,80 80,40

Left (80) Right (20)
Reversed Top (8) 44,40 40,80

Bottom (92) 40,80 80, 40

Table 1: The Goeree–Holt Results on three different versions of Matching
Pennies.

actions, and her payoffs have not been modified.
In the second game, called the asymmetric Matching Pennies game, player

1 gets 320 instead of 80 in the upper left outcome. All other payoffs remain
the same. Many humans now deviate from Nash, as is reported in brackets,
96% of the players taking the action “Top”. Interestingly, also the humans
playing the role of player 2 change their behavior, and most of them play
“Right”, the best reply to “Top”.

In the third case, player 1’s payoff in the upper left outcome is decreased
to a lowly 44. Then only 8% of players choose “Top”; 80% of humans in the
role of player 2 choose “Left”.

While aggregate behavior by humans is certainly inconsistent with the
predictions of Nash equilibrium, it is consistent with Ellsberg equilibria. We
summarize the results in Table 2.

In the symmetric game, our Proposition 5 essentially predicts only Nash
equilibrium behavior, and this is what we observe in the experiment as well.

In the asymmetric Matching Pennies game, the Nash equilibrium strate-
gies are P

∗ = 1/2 for player 1 and Q
∗ = 1/8 for player 2. According to

our proposition, the Ellsberg equilibria allow for probabilities in the interval
[1/2, 1] for player 1 choosing “Top”, and for the interval [1/8, 1/2] for player
2 choosing “Left”. The observed percentages of 96% and 16% do lie in these
intervals.

And in the “reversed” version of the game, the Nash equilibrium strategies
are P

∗ = 1/2 and Q
∗ = 10/11. So we have the reversed relation Q

∗
> P

∗.
The Ellsberg equilibria allow for probabilities for “Top” in the interval [0, 1/2]
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Game Nash Equilibrium Ellsberg Equilibrium Observations

Player 1 Player 2 Player 1 Player 2 Player 1 Player 2
symmetric 0.5 0.5 0.5 0.5 0.48 0.48
asymmetric 0.5 0.125 [0.5,1] [0.125,0.5] 0.96 0.16
reversed 0.5 0.90 [0,0.5] [0.5,0.90 ] 0.08 0.8

Table 2: Comparison of Nash and Ellsberg Predicitions with the Experiman-
tal Observations. We record the probabilities (or intervals of probabilities)
for each player to play the first pure strategy (“Top” resp. “Left”) and the ob-
served aggregate frequency of these actions in the Goeree–Holt experiments.

for player 1, and for probabilities in [1/2, 10/11] for player 2. The aggregate
observed quantities of 8% and 80% do lie in these intervals.

5.4 Observational Implications of Game Theory and
Human Behavior

Game Theory studies equilibrium outcomes of social conflicts when rational
agents interact. Human beings are quite different from rational agents in
general, so one can only expect to see a consistency with Nash equilibrium
predictions and human behavior when the situation is controlled in such a
way as to bring out the rational part of humans.

Nevertheless, it does make sense to ask what the observational implica-
tions of our theory are. For three player games, this is quite clear, as our
theory predicts new equilibria outside the support of Nash equilibria; this is
a testable implication, and we shall proceed one day to carry out such a test.

For two player games, the situation is more subtle. Both the Nash equi-
librium and the Ellsberg equilibria have full support, so the only thing that
we can learn from our theory seems to be that either action is fine in a one
shot game. This is indeed the stance of Bade (2011), in line with a number
of predecessors.

There is, however, a way to distinguish the predictions of Ellsberg equi-
libria and Nash equilibria even in two player games. To understand this, we
need first explain how the law of large numbers looks like under ambiguity.
The classical law states that the frequency of HEAD in an infinite sequence
of independent coin tosses will converge to the probability of HEAD. Now
let us look at a typical Ellsberg urn that contains 100 balls, red and black,
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and we only know that the number of red balls is between 30 and 60. What
can we say about the average frequency drawn from independent repetitions
of the Ellsberg experiment? The natural guess would be that the average
lies in the interval between 30% and 60% in the long run. This is indeed cor-
rect, and mathematical versions of that theorem have recently been proven,
see Maccheroni and Marinacci (2005) and Epstein and Schneider (2003), e.g.
Peng (2007) has obtained the result that the average frequency will indeed
fluctuate between both bounds, and every point in the interval [0.3, 0.6] is
an accumulation point of the sequence.

What is then the empirical content of such laws of large numbers? If we
adhere to the point of view that our observed humans play independently
one shot games, and that they should play equilibrium strategies, then the
average frequency will converge to the Nash equilibrium strategy according
to the classical theory, and will fluctuate between two bounds according to
the new Ellsberg theory.

We thus do get observational differences between the two theories; and
we interpret the Goeree–Holt results as a first evidence that our theory can
accommodate deviations from Nash equilibrium observed in laboratories.

6 Related Literature and Discussion

Several authors introduce Knightian uncertainty into complete–information
normal form games. We discuss their concepts and compare them to our
approach.

Dow and Werlang (1994), Lo (1996), Marinacci (2000), Eichberger and
Kelsey (2000) and Eichberger, Kelsey, and Schipper (2009) all extend the
interpretation of Nash equilibrium as an equilibrium in beliefs. For example,
Dow andWerlang (1994) interpret their non–additive (Choquet) probabilities
as uncertain beliefs about the other player’s action. A pair (P1, P2) of non–
additive probabilities is then a Nash equilibrium under Knightian uncertainty
if each action in a support of player 1’s belief P1 is optimal given that he uses
P2 to evaluate his expected payoff, and similarly for player 2. We thus have
here a first version of an equilibrium in beliefs. This approach is refined by
Marinacci (2000) and extended to n–person games by Eichberger and Kelsey
(2000).

Lo (1996) introduces the concept of equilibrium in beliefs under uncer-
tainty where the beliefs are represented by multiple priors over other players’
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mixed strategies. Each player i has a set of beliefs Bi over what the other
players do, so over ∆S−i. The profile (Bi) then forms a beliefs equilibrium
if player j puts positive weight only on strategies of player i that maximize
i’s minimal expected payoff given the belief set Bi. This concept allows for
disagreement of players’ beliefs, and for correlation. Lo therefore introduces
the refinement of a beliefs equilibrium with agreement in which player j and
k agree about player i’s actions and the beliefs of i over j and k are inde-
pendent. Lo proves the nice result that every beliefs equilibrium contains
a Bayesian beliefs equilibrium (where the belief sets are singletons). As a
corollary, he obtains a precursor of Bade (2011)’s main theorem (which we
discuss in a later paragraph): in two player games, every beliefs equilibrium
contains a Nash equilibrium.

Note that all the equilibrium concepts discussed above do not specify
which action will actually be played in equilibrium. In Lo (1996) players
can play any pure or mixed strategy that is a best response to their belief
set, in the other equilibrium notions mentioned, players only have access to
pure strategies in the support of the capacities. This stands in contrast to
Ellsberg equilibrium, where the equilibrium strategy is fixed by the Ellsberg
urn chosen. The strategy is a best response to the belief, and the belief
coincides with the strategy played.

Klibanoff (1996), Lehrer (2008) and Lo (2009) propose an approach sim-
ilar to beliefs equilibrium. Uncertainty is present in players’ beliefs that are
represented by sets of distributions. Equilibrium is defined as a profile of
beliefs and an objectively mixed (or pure) strategy for each player, which
is the strategy that he plays in equilibrium. These strategies need to be
contained in the belief sets. Accordingly, players have to anticipate their op-
ponents’ strategy correctly in the sense that the truth is part of their belief.
This consistency requirement is weaker than in Nash equilibrium (and weaker
than in Ellsberg equilibrium!) and typically the strategies in equilibrium are
not best responses to the actual strategies played. Klibanoff (1996) pro-
poses a refinement where only correlated rationalizable beliefs are allowed.10

Lehrer (2008) develops a model of decision making under uncertainty with
partially–specified probabilities, these are used to represent the players’ un-
certain beliefs about their opponents. Lo (2009) establishes formal epistemic

10Lo (1996) requires every probability distribution in the belief sets to be a best response,
therefore every beliefs equilibrium with agreement is a refinement of equilibrium with
uncertainty aversion and rationalizable beliefs (this is shown in Lo (1996), Proposition 9).
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foundations for an equilibrium concept with ambiguity–averse preferences.
He finds that epistemically stochastic independence is not necessary for a
generalized Nash equilibrium concept. A correlated Nash equilibrium is a
pair �σ,Φ� consisting of a profile of beliefs Φi and a profile of mixed strate-
gies σi where, for consistency, each strategy ai in the support of σi is a best
response to the belief Φi.

Bade (2011) goes a first step in another direction, away from the beliefs
interpretation of Nash equilibrium. She allows players to use acts in the
sense of Anscombe–Aumann and players are uncertainty–averse over such
acts.11 In an ambiguous act equilibrium, players play best responses as in
Nash equilibrium, but under the generalized framework. A large class of
ambiguity–averse preferences are covered. The possible priors for an am-
biguous act are part of the players’ preferences in her setup. Bade then
adds some appropriate consistency properties (agreement on null events) to
exclude unreasonably divergent beliefs, and she imposes the rather strong as-
sumption that preferences are strictly monotone, following Klibanoff (1996)
here. This excludes beliefs on the boundary of strategy sets; such degen-
erated beliefs are sometimes important, though. For example, it excludes
Ellsberg urns with full ambiguity where it is only known that the probabil-
ity for a red ball is between 0 and 1. Bade’s main theorem establishes that
under her assumptions, in two–person games the support of ambiguous act
equilibria and the support of Nash equilibria coincide.

In difference to her setup we let ambiguity be an objective instrument
that is not derived from subjective preferences. Players can credibly commit
to play an Ellsberg urn with a given and known degree of ambiguity. In
Ellsberg games players use devices that create ambiguity, thus we extend the
objective random devices interpretation of Nash equilibrium. The articles
cited above impose non–expected utility representations derived from sub-
jective preferences, like maxmin expected utility by Gilboa and Schmeidler
(1989), Choquet expected utility by Schmeidler (1989), or they fix only cer-
tain axioms to allow for a large class of ambiguity–averse preferences. To

11Aumann (1974), Epstein (1997) and Azrieli and Teper (2011) (amongst others) have
also defined games that have Anscombe–Aumann acts as strategies, but to different ends.
Aumann (1974) defines such a general game, then imposes Savage expected utility and
analyses properties of correlated and subjective equilibrium. Epstein (1997) analyses
games very similar to Bade’s, but is mainly interested in rationalizability and iterated
deletion of strictly dominated strategies in the generalized framework. Azrieli and Teper
(2011) define an extension of an incomplete–information game.
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model the preferences in Ellsberg games we use the representation results by
Gajdos, Hayashi, Tallon, and Vergnaud (2008) on attitude towards imprecise
information which capture the objective ambiguity we have in mind.

7 Conclusion

This article demonstrates that the strategic use of ambiguity is a relevant
concept in game theory. Employing objective ambiguity as a strategic in-
strument leads to a new class of equilibria not encountered in classic game
theory. We point out that in many games players choose to be deliberately
ambiguous to gain a strategic advantage.

In some games this results in equilibrium outcomes which cannot be ob-
tained as Nash equilibria. The peace negotiation game provides an example
of such Ellsberg equilibria. Games with more than two players offer a strate-
gic possibility that is not available in two–person games, because a third
player is able to induce the use of different probability distributions. Al-
though countries A and B observe the same Ellsberg strategy played by the
superpower C, due to their ambiguity aversion the countries use different
probability distributions to assess their utility. We plan to say more on this
power of the third player, as well as on immunization against strategic am-
biguity in games with more than two players, in a companion paper.

However, also two–person 2 × 2 games with conflicting interests have
Ellsberg equilibria which are different from classic mixed strategy Nash equi-
libria. There are equilibria in which both players create ambiguity. They use
an Ellsberg strategy where they only need to control the lower (or upper)
bound of their set of probability distributions. We argue that this device
is easier to use for a player than playing one precise probability distribu-
tion like in mixed strategy Nash equilibrium. What makes this argument
attractive is that the payoffs in these Ellsberg equilibria are the same as in
the unique mixed Nash equilibrium and thus the use of ambiguous strategies
in competitive games is indeed an option. Our argument is strengthened
by experimental results. Without any further assumptions besides ambigu-
ity aversion, Ellsberg equilibria can explain human non–Nash behavior in
modified Matching Pennies games. In symmetric Matching Pennies, humans
tend to play the Nash equilibrium which is also in line with our result that
essentially no new equilibria emerge in such symmetric games.
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A Equivalence of the Different Formulations
of Ellsberg Equilibrium

We provide here the proof of Proposition 1. First we recap the definition of
an Ellsberg equilibrium, which was stated in the text of Section 3.

Definition 2. Let G = �N, (Si), (ui)� be a normal form game. A profile

(((Ω∗
1,F∗

1 ,P∗
1 ), f

∗
1 ), ..., ((Ω

∗
n,F∗

n,P∗
n), f

∗
n))

of Ellsberg strategies is an Ellsberg equilibrium of G if no player has an

incentive to deviate from ((Ω∗
,F∗

,P∗), f ∗), i.e. for all players i ∈ N , all

Ellsberg urns (Ωi,Fi,Pi) and all acts fi for player i we have

Ui(((Ω
∗
,F∗

,P∗), f ∗)) ≥ Ui(((Ωi,Fi,Pi), fi), ((Ω
∗
−i,F∗

−i,P∗
−i), f

∗
−i)), that is

min
Pi∈P∗

i ,P−i∈P∗
−i

�

Ω∗
i

�

Ω∗
−i

ui(f
∗
i (ωi), f

∗
−i(ω−i)) dP−idPi

≥ min
Pi∈Pi,P−i∈P∗

−i

�

Ωi

�

Ω∗
−i

ui(fi(ωi), f
∗
−i(ω−i)) dP−idPi.

The definition of the reduced form Ellsberg equilibrium was given in Def-
inition 1.

Proof. ” ⇐ ” Let Q∗ be an Ellsberg equilibrium according to Definition 1.
We choose the states of the world Ω = S to be the set of pure strategy profiles,
thereby we see that player i uses the Ellsberg urn (Si,Fi,Q∗

i ). We define the
act f

∗
i : (Si,Fi) → ∆Si to be the constant act that maps f

∗
i (si) = {δsi}.

{δsi} ∈ ∆Si is the degenerate mixed strategy which puts all weight on the
pure strategy si. Each measure Qi ∈ Q∗

i has an image measure under f ∗
i ,

Qi ◦ f ∗−1

i : {δsi} �→ Qi(f
∗−1

i ({δsi}).

Qi◦f ∗−1

i can be identified withQi ∈ Q∗
i . Thus the reduced form Ellsberg equi-

librium strategy Q∗
i can be written as the Ellsberg strategy ((S,F ,Q∗), f ∗).

This strategy is an Ellsberg equilibrium according to Definition 2.
” ⇒ ” Let now ((Ω∗

,F∗
,P∗), f ∗) be an Ellsberg equilibrium according to

Definition 2. Every Pi ∈ P∗
i induces an image measure Pi ◦ f ∗−1

i on ∆Si that
assigns a probability to a distribution f

∗
i (ωi) ∈ ∆Si to occur.
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To describe the probability that a pure strategy si is played, given a distri-
bution Pi and an Ellsberg strategy ((Ω∗

i ,F∗
i ,P∗

i ), f
∗
i ), we integrate f

∗
i (ωi)(si)

over all states ωi ∈ Ωi. Thus we can define Qi to be:

Qi(si) :=

�

Ω∗
i

f
∗
i (ωi)(si) dPi. (1)

Recall that Pi is a closed and convex set of probability distributions. We
get a measure Qi on Si for each Pi ∈ Pi ⊆ ∆Ωi. We call the resulting set of
probability measures Q∗

i .

Q∗
i (si) :=

�
Qi(si) =

�

Ω∗
i

f
∗
i (ωi)(si) dPi | Pi ∈ P∗

i

�
.

Q∗
i is closed and convex, since P∗

i is.
Now suppose Q∗ was not a reduced form Ellsberg equilibrium. Then for

some player i ∈ N there existed a set Qi of probability measures on Si that
yields a higher minimal expected utility. This means we would have

min
Qi∈Qi,Q−i∈Q∗

−i

�

Si

�

S−i

ui(si, s−i) dQ−idQi

> min
Qi∈Q∗

i ,Q−i∈Q∗
−i

�

Si

�

S−i

ui(si, s−i) dQ−idQi (2)

for some Qi �= Q∗
i . Let Q

�
i be the minimizer of the first expression, then it

must be that Q�
i /∈ Q∗

i . We know that Q�
i is derived from some some P �

i under
the equilibrium act,

Q
�
i(si) =

�

Ω∗
i

f
∗
i (ωi)(si) dP

�
i . (3)

It follows that P �
i is not element of the equilibrium Ellsberg urn (Ω∗

i ,F∗
i ,P∗

i ),
that is P �

i /∈ P∗
i . Now it remains to show that in the original game P �

i yields a
higher minimal expected utility than using P∗

i . In that case ((Ω∗
,F∗

,P∗), f ∗)
is not an Ellsberg equilibrium and the proof is complete.

Let player i use P �
i in his maxmin expected utility evaluation in the orig-

inal game. This yields

min
P−i∈P∗

−i

�

Ω∗
i

�

Ω∗
−i

ui(f
∗
i (ωi), f

∗
−i(ω−i)) dP−idP

�
i (4)

= min
P−i∈P∗

−i

�

Ω∗
i

�

Ω∗
−i

�

Si

�

S−i

ui(si, s−i) df
∗
−i(ω−i)df

∗
i (ωi) dP−idP

�
i .
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Recall that we use ui to be the utility function on Si as well as on ∆Si. We
use equations (1) and (3) to rewrite the expression and get

min
Q−i∈Q∗

−i

�

Si

�

S−i

ui(si, s−i) dQ−idQ
�
i. (5)

We know by equation (2) that this is larger than the minimal expected utility
over Q∗

i and this gives

(5) > min
Qi∈Q∗

i ,Q−i∈Q∗
−i

�

Si

�

S−i

ui(si, s−i) dQ−idQi

= min
Pi∈P∗

i ,P−i∈P∗
−i

�

Ω∗
i

�

Ω∗
−i

ui(f
∗
i (ωi), f

∗
−i(ω−i)) dP−idPi.

Going back to equation (4) we see that this contradicts the assumption that
((Ω∗

,F∗
,P∗), f ∗) was an Ellsberg equilibrium. Thus Q∗ is a reduced form

Ellsberg equilibrium.

B Strategic Ambiguity in Two–Person Con-
flicts

We provide here the proof of Proposition 5.

Proof. The game has a unique Nash equilibrium in which player 1 plays U

with probability

P
∗ =

f − e

d− 2e+ f
,

and player 2 plays L with probability

Q
∗ =

c− b

a− 2b+ c
.

The Nash equilibrium strategies follow from the usual analysis. The condi-
tions on the payoffs assure that the Nash equilibrium is completely mixed,
i.e. 0 < P

∗
< 1 and 0 < Q

∗
< 1.

Let now [P0, P1] and [Q0, Q1] be Ellsberg strategies of player 1 and 2,
where P ∈ [P0, P1] is the probability of player 1 to play U , and Q ∈ [Q0, Q1]
is the probability of player 2 to play L.
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Let us compute the minimal expected payoff.
The minimal expected payoff of player 1 when he plays the mixed strategy

P is

min
Q0≤Q≤Q1

u1(P,Q) = min
Q0≤Q≤Q1

aPQ+bP (1−Q)+b(1−P )Q+c(1−P )(1−Q)

= min
Q0≤Q≤Q1

Q(b− c+ P (a− 2b+ c)) + bP + c− cP

=






Q1(b− c+ P (a− 2b+ c)) + bP + c− cP if P <
c−b

a−2b+c
ac−b2

a−2b+c if P = c−b
a−2b+c

Q0(b− c+ P (a− 2b+ c)) + bP + c− cP else .

Note that the payoff function has a fixed value at P = c−b
a−2b+c , which is

player 2’s Nash equilibrium strategy. Depending on Q0 and Q1 the minimal
payoff function can have six different forms. It can be strictly increasing,
strictly decreasing, have flat parts or be completely constant. To determine
how player 1 maximizes his minimal payoff for different Q0 and Q1 we look
at the borders of the minimal payoff function, where P = 0 and P = 1. This
gives us two functions

min
Q0≤Q≤Q1

u1(0, Q) = Q1(b− c) + c and min
Q0≤Q≤Q1

u1(1, Q) = Q0(a− b) + b.

Note that b − c < 0 and a − b > 0, that is, the minimal payoff function is
decreasing with Q1 at P = 0 and increasing with Q0 at P = 1. When

Q1 =
c− b

a− 2b+ c
= Q

∗
, then min

Q0≤Q≤Q1

u1(0, Q) =
ac− b

2

a− 2b+ c
,

that is, the minimal payoff function is constant for 0 ≤ P ≤ Q
∗. The same

is true for the other boundary. When

Q0 =
c− b

a− 2b+ c
= Q

∗
, then min

Q0≤Q≤Q1

u1(1, Q) =
ac− b

2

a− 2b+ c
,

that is, the minimal payoff function is constant for Q∗ ≤ P ≤ 1.
With this analysis one can see immediately that when Q0 = Q

∗ = Q1,
the minimal payoff function is constant for all P ∈ [0, 1] thus any Ellsberg
strategy [P0, P1] ⊆ [0, 1] is a best response for player 1.

Assume that Q0 > Q
∗, then (since a− b > 0) the minimal payoff function

will be strictly increasing and the best response of player 1 is P0 = P1 = 1.
The opposite is true for Q1 < Q

∗ and thus the best response is P0 = P1 = 0.
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Observe that when Q0 < Q
∗
< Q1, the values of both boundary functions

drop below Q
∗ and the function takes its maximum at the kink P = Q

∗.
Therefore player 1’s best response in this case is P0 = P1 = Q

∗.
Two cases are still missing. The minimal expected payoff function can

be flat exclusively to the left or to the right of Q∗. For all P ∈
�
0, c−b

a−2b+c

�
=

[0, Q∗], Player 1’s utility is constant at ac−b2

a−2b+c when Q1 =
c−b

a−2b+c = Q
∗, and it

is strictly decreasing for P > Q
∗. Hence, all P ≤ Q

∗ are optimal for player 1.
He can thus use any Ellsberg strategy [P0, P1] with P1 ≤ Q

∗ as a best reply.
Similarly, the payoff is constant for all P ≥ Q

∗ when Q0 = Q
∗ (and strictly

increasing for P < Q
∗). This means that player 1’s best response to a strat-

egy [Q0, Q
∗] is any strategy [P0, P1] ⊆ [0, Q∗], and player 1’s best response to

a strategy [Q∗
, Q1] where Q

∗ ≤ Q1 ≤ 1 is any strategy [P0, P1] ⊆ [Q∗
, 1].

We repeat the same analysis for player 2. His minimal expected utility when
he plays the mixed strategy Q is

min
P0≤P≤P1

u2(P,Q) = min
P0≤P≤P1

dPQ+eP (1−Q)+e(1−P )Q+f(1−P )(1−Q)

= min
P0≤P≤P1

P (e− f +Q(d− 2e+ f)) + eQ+ f − fQ

=






P0(e− f +Q(d− 2e+ f)) + eQ+ f − fQ if Q <
f−e

d−2e+f
df−e2

d−2e+f if Q = f−e
d−2e+f

P1(e− f +Q(d− 2e+ f)) + eQ+ f − fQ else .

Note that the payoff function has a fixed value at Q = f−e
d−2e+f , which is

player 1’s Nash equilibrium strategy. Again, as for player 1, depending on
P0 and P1 the minimal payoff function can have six different forms. We note
the two functions that describe the minimal payoff function at the borders
Q = 0 and Q = 1:

min
P0≤P≤P1

u1(P, 0) = P0(e− f) + f and min
P0≤P≤P1

u1(P, 1) = P1(d− e) + e.

Note that e − f > 0 and d − e < 0, that is, the minimal payoff function is
increasing with P0 in P = 0 and decreasing with P1 in P = 1. When

P0 =
f − e

d− 2e+ f
= P

∗
, then min

P0≤P≤P1

u2(P, 0) =
df − e

2

d− 2e+ f
,
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that is, the minimal payoff function is constant for 0 ≤ Q ≤ P
∗. The same

is true for the other boundary: When

P1 =
f − e

d− 2e+ f
= P

∗
, then min

P0≤P≤P1

u2(P, 1) =
df − e

2

d− 2e+ f
,

that is, the minimal payoff function is constant for P ∗ ≤ Q ≤ 1.
Similar to the analysis of player 1 we now get the following best responses

of player 2. When P0 = P
∗ = P1 player 2 can use any strategy [Q0, Q1] ⊆

[0, 1], when P0 > P
∗ the best response is Q0 = Q1 = 0 and when P1 < P

∗

then Q0 = Q1 = 1. When P0 < P
∗
< P1 the minimal payoff function takes

its maximum at the kink Q = P
∗ and accordingly player 2’s best response is

Q0 = Q1 = P
∗.

Finally note that Player 2’s utility is constant at df−e2

d−2e+f for all Q ∈�
0, f−e

d−2e+f

�
= [0, P ∗] when P0 = f−e

d−2e+f = P
∗, and it is strictly decreasing

for Q > P
∗. Hence, all Q ≤ P

∗ are optimal for player 2. He can thus use
any Ellsberg strategy [Q0, Q1] with Q1 ≤ P

∗ as a best reply. Similarly, the
payoff is constant for all Q ≥ P

∗ when P0 = P
∗ (and strictly increasing for

Q < P
∗). This means that player 2’s best response to a strategy [P ∗

, P1]
is any strategy [Q0, Q1] ⊆ [0, P ∗], and player 2’s best response to a strategy
[P ∗

, P1] where P
∗ ≤ P1 ≤ 1 is any strategy [Q0, Q1] ⊆ [P ∗

, 1].

In Ellsberg equilibrium no player wants to unilaterally deviate from his
equilibrium strategy. We analyze in the following which Ellsberg strategies
have best responses such that no player wants to deviate.

We assume first that Q∗
< P

∗.
Three Ellsberg strategies can quickly be excluded to be part of an Ellsberg

equilibrium. Suppose player 2 plays [Q0, Q1] with Q0 > Q
∗, then player

1’s best response is P0 = P1 = 1 and since we are looking at a strictly
competitive game, player 2 would want to deviate from his original strategy
to Q0 = Q1 = 0. A similar reasoning leads to the result that an Ellsberg
strategy [Q0, Q1] with Q1 < Q

∗ cannot be an equilibrium strategy. Thirdly,
suppose player 2 plays [Q0, Q1] with Q0 < Q < Q1, then player 1 would
respond with P0 = P1 = Q

∗. Since Q
∗
< P

∗ player 2 would deviate from his
original strategy to Q0 = Q1 = 1.

Now suppose player 2 plays Q0 = Q1 = Q
∗, then player 1 can respond

with any [P0, P1] ⊆ [0, 1]. Any choice with P0 ≥ P
∗, P1 < P

∗ or P0 < P
∗
<

P1 lead to contradictions similar to the cases above. The possibilities that
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P0 < P1 = P
∗ or P0 = P1 = P

∗ (which are Ellsberg equilibria) are contained
in the Ellsberg equilibria that arise in the two remaining cases below.

Suppose player 2 plays [Q∗
, Q1] with Q

∗ ≤ Q1 ≤ 1, then if player 1
responds with [P0, P1] = [P ∗

, P1] with P
∗ ≤ P1 ≤ 1 player 2 would play any

strategy [Q0, Q1] ⊆ [0, P ∗] as a best response. Because Q
∗
< P

∗, player 2
can choose [Q0, Q1] = [Q∗

, Q1] with Q
∗ ≤ Q1 ≤ P

∗. These strategies are
Ellsberg equilibria

([P ∗
, P1], [Q

∗
, Q1]) where P

∗ ≤ P1 ≤ 1 and Q
∗ ≤ Q1 ≤ P

∗
.

In the case Q
∗
< P

∗ this is the only type of Ellsberg equilibrium. Note that
the Nash equilibrium is contained in these equilibrium strategies.

When we assume that P ∗
< Q

∗ the analysis is very similar. We skip the
first four cases and only look at the cases where the minimal payoff function
has flat parts. Suppose player 2 plays [Q0, Q

∗] with 0 ≤ Q0 ≤ Q
∗, then if

we let player 1 pick [P0, P1] ⊆ [P0, P
∗] with 0 ≤ P0 ≤ P

∗, player 2’s best
response is any subset [Q0, Q1] ⊆ [P ∗

, 1]. Again, because P
∗
< Q

∗, he can
choose [Q0, Q1] = [Q0, Q

∗] with P
∗ ≤ Q0 ≤ Q

∗ as a best response. Player 1
would not want to deviate and thus these strategies are Ellsberg equilibria

([P0, P
∗], [Q0, Q

∗]) where 0 ≤ P0 ≤ P
∗ and P

∗ ≤ Q0 ≤ Q
∗
.

As before, this is the only type of Ellsberg equilibrium in case P
∗
< Q

∗.

Finally let P
∗ = Q

∗. Repeat the considerations above having in mind
the equality of the Nash equilibrium strategies. Since it was precisely the
difference between P

∗ and Q
∗ that led to the Ellsberg equilibria in the above

cases, we see that no Ellsberg equilibria exist where both players create
ambiguity. But, in difference to the above analysis, two types of Ellsberg
equilibria with unilateral ambiguity arise that could not be sustained above.

Remember that when player 2 plays [Q0, Q1] with Q0 < Q
∗
< Q1 then it

is optimal for player 1 to respond with P0 = P1 = Q
∗. Since P

∗ = Q
∗ these

strategies are in equilibrium, even for Q0 ≤ Q
∗ ≤ Q1. One observes that, as

long as player 2 makes sure that the mixed Nash equilibrium strategy Q
∗ is

strictly contained in his Ellsberg strategy, player 1 will respond with Q
∗ and

we have Ellsberg equilibria in which player 1 immunizes against the ambiguity
of player 2. An analogous type of Ellsberg equilibrium exists for player 2
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immunizing against the ambiguity of player 1 by playing Q0 = Q1 = P
∗.

Thus we have the following Ellsberg equilibria

(Q∗
, [Q0, Q1]) where Q0 ≤ Q

∗ ≤ Q1

and
([P0, P1], P

∗) where P0 ≤ P
∗ ≤ P1.

These equilibria do not exist in the non–symmetric case P
∗ �= Q

∗ since the
immunization strategies are in general not equilibrium strategies. Due to the
assumptions on the payoffs in this proposition, the immunization strategy
equals the Nash equilibrium strategy of the opponent. Thereby the immu-
nization strategy is an equilibrium strategy only when P

∗ = Q
∗.

Remark 1. 1. In Proposition 5 we restrict to the case with (U,D) and

(L,R) giving the same payoffs (b, e) for both players. Of course the

Ellsberg equilibria of competitive games with more general payoffs can

easily be calculated, the calculations are available upon demand. The

more general competitive game yields two more types of Ellsberg equi-

libria. The nice feature of our restriction is that players use the mixed

Nash equilibrium strategy of their respective opponent as their immu-

nization strategy.

2. Observe the asymmetry in the Ellsberg equilibria in the preceding propo-

sition: no matter if P ∗
< Q

∗ or Q∗
< P

∗, always it is player 2 who cre-

ates ambiguity between the Nash equilibrium strategies, player 1 never

does so. This is due to the assumptions on the payoffs. If we assume

that a, c < b and d, f > e player 1 will play between P
∗ and Q

∗.

3. Note that Proposition 5 holds likewise for zero sum games, but due to

the assumptions on the payoffs the proposition restricts to zero sum

games where P
∗ = Q

∗. This can be seen easily by setting d := −a,

f =: −c and e := −b, then P
∗ = f−e

d−2e+f = c−b
a−2b+c = Q

∗. Therefore in

the Ellsberg equilibria of two–person 2 × 2 zero sum games under the

assumptions of Proposition 5 only one player creates ambiguity. This

also holds for general two–person 2 × 2 zero sum games, although in

those games in general P ∗ �= Q
∗. The result then hinges on the fact

that the immunization strategy of player i is always equal to his own

Nash equilibrium strategy.
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